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Dispersion Analysis of the Linear Vane-Type
Waveguide Using the Generalized Scattering Matrix

W. Scott Best, Member, IEEE, Ronald J. Riegert, and Lewis C. Goodrich

Abstract— The dispersion characteristics for the linear vane-
type waveguide are determined using the generalized scattering
matrix (GSM) formed with the mode matching algorithm. This
dispersion analysis technique includes determining the eigenval-
ues (cutoff frequencies) for the various waveguide modes that
can propagate on the circuit, as well as forming a determinantal
equation for a single period of the circuit from which the system
normal mode dispersion characteristics are determined. The
resulting GSM is easily manipulated for determining eigenvalues
for single or multiple periods of a periodic circuit using either
a perfect electrical conductor (PEC) or a Re-entrant boundary
condition. This boundary condition formulation using the GSM
provides a generalized eigenvalue technique for 2-D and 3-D
structures. Similarly, the GSM is easily manipulated to yield a
new analytic expression for a determinantal equation to predict
the dispersion of the system normal modes for the periodic
circuit. The accuracy of the GSM eigenvalue and dispersion
solution techniques are limited by the frequency resolution of
the simulation and the relative convergence (RC) criterion.

I. INTRODUCTION

HE DISPERSION characteristics of a periodic circuit,

such as the vane-type waveguide, may be determined with
a variety of experimental, analytic, and numerical techniques.
Experimental methods [1] employing the resonance technique
are commonly used to measure the dispersion characteristics
for a periodic circuit after construction. Dispersion measure-
ments are necessary for comparing the design objectives with
those obtained from the physical hardware. The correlation
between the dispersion design objectives and that obtained
from the physical hardware is strongly dependent upon the
design technique used for the periodic structure. Accurate
design techniques are required to maximize the correlation be-
tween the dispersion design objectives and the experimentally
measured dispersion information.

Historically, the vane-type waveguide has been designed
using a variety of techniques. The selected design technique
depends upon the configuration of the vane-type waveguide,
which may exist in either a closed end-space or in an open end-
space configuration. Similarly, the vane-type waveguide may
exist in a cylindrical re-entrant format such as that used with
the magnetron oscillator [2], or in a linear format for amplifier
[3], [4], antenna [5], and filter [6] applications. This analysis
deals with the linear closed end-space vane-type waveguide
configuration shown in Fig. 1, which is fundamentally a
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Fig. 1.

3-D linear vane-type waveguide geometry.

rectangular waveguide with a corrugated surface capable of
propagating slow waves.

This configuration can be analyzed to determine the circuit
dispersion characteristics using variational techniques yielding
equivalent circuit models [2], [7] and field matching models
[2], [4], [7], [8] from which the dispersion characteristics
of the circuit are determined. These modeling techniques
are tailored to determine the dispersion of selected modes
defined by the basis functions used to represent the modes
propagating on the circuit. The assumptions used with these
modeling techniques typically provide at best a 1% error
between the predicted and measured dispersion characteristics
of the circuit. Expensive experimental techniques are required
to resolve the resulting design errors. Problems are also
often encountered in the laboratory with the revelation that
competing cavity and waveguide modes exist in the passband
of the desired system normal mode, causing interference and
power loss from the desired mode of operation for the circuit.
These problems are typically not identified using variational
approaches for designing vane-type waveguides.

These dispersion design problems can be resolved using
generalized numerical electromagnetics modeling codes in-
volving finite difference or finite element algorithms. Recently
published information [9], [10] concerned with using these
algorithms as design tools to determine the dispersion charac-
teristics of slow wave modes for periodic circuits illustrates the
ability to model arbitrarily shaped structures with the codes,
but also discusses the errors typically obtained with these
algorithms. The 3-D finite difference MAFIA code [9] has
been recently used to model the dispersion characteristics of

0018-9480/95%04 00 © 1995 IEEE



2102

a coupled-cavity traveling wave tube slow wave circuit. The
MAFIA dispersion algorithm was able to obtain an error range
between measured and calculated dispersion information of
0.0% to 1.6% over the passband for the slow wave circuit
mode. Similarly, the 2-D finite difference QUAP and 3-D
finite difference ARGUS codes [10] were able to model a
hole-and-slot waveguide coupled crossed-field amplifier slow
wave circuit. These finite difference dispersion algorithms
were able to obtain an error range between measured and
calculated dispersion information for the slow wave mode
of 0.1% to 2.1%. These errors are related to discretizing
the periodic circuit structure space to properly represent the
problem boundaries to the generalized dispersion algorithms.
Errors of this type may be minimized by increasing the mesh
density for the finite difference simulation [10], or by using
alternative periodic circuit dispersion algorithms such as the
GSM mode matching algorithm.

Many dispersion design problems can be resolved using the
mode matching algorithm [11], which results in the formation
of the generalized scattering matrix (GSM) [11]-[14] for a
periodic circuit. The vane-type waveguide to be analyzed is
considered as a two port circuit in this study. The resulting
GSM for this two port periodic circuit yields an analytic
expression for the system eigenvalues using either a perfect
electrical conductor (PEC) or a Re-entrant boundary condition.
Similarly, the GSM yields a new analytic expression for the
determinantal equation of the periodic circuit, from which the
dispersion of the system normal mode or modes is determined.
The accuracy of the eigenvalues and determinantal equation
determined from manipulation of the GSM is a function of
the frequency resolution for the simulation and the relative
convergence (RC) criterion [7], [11].

Section II presents the details of how the GSM is ma-
nipulated to calculate eigenvalues using either a PEC. or a
Re-entrant boundary condition. Section III presents the details
of how the GSM is manipulated to yield a determinantal
equation from which the dispersion characteristics of the
system normal modes of a periodic circuit are determined.
Section IV provides a demonstration of the eigenvalue and dis-
persion algorithms using the GSM in comparison to measured
dispersion information for a linear closed end-space vane-
type waveguide. Finally, Section V summarizes this work and
illustrates the generality of the analytic technique for analyzing
the dispersion characteristics of periodic circuits using the
mode matching algorithm when a GSM is determined.

II. EIGENVALUE ANALYSIS USING THE GSM

A. Introduction to the GSM for Eigenvalue Analysis

The mode matching algorithm employing the GSM is typ-
ically used to determine the normal mode scattering charac-
teristics of two or more cascaded waveguides. Each region
or section of waveguide forming the circuit typically contains
a different number of modes in the normal mode expansion
of the electromagnetic fields. The number of modes used for
each region is determined from the RC criterion. A typical
circuit configuration for this analytical technique is shown in
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Fig. 2. Cascaded waveguide configuration for mode matching analysis.
Fig. 2, where each region of the circuit is composed of a
unique normal mode expansion for the type of waveguide (i.e.,
rectangular, cylindrical, coaxial, elliptical, parallel plate, etc.),
and each region may contain a different number of modes to
properly satisfy the RC criterion.

The resulting GSM for the geometry shown in Fig. 2 is

S11 Siz

represented as
ot {El]z[ﬁl}. 1)
Sz1 Sz | L92 bo

This matrix form for the cascaded waveguide configuration
shown in Fig. 2 represents only the scattering parameters (
Si11, S12, 821, So2) and scattering variable (@1, ag, b1, ba)
amplitudes for the first (Region 1) and last (Region N)
regions of the circuit. The GSM formulation of the mode
matching algorithm involves matrix manipulation techniques
that permit the scattering matrices for the uniform lengths
of waveguide and waveguide junctions to be combined in a
compact, unconditionally stable matrix representing the two
port scattering characteristics for the circuit being studied.

B. GSM Eigenvalue Problems Using the
PEC Boundary Condition

The GSM and corresponding scattering variable vector
representation shown in (1) is for each mode contained in
the first and last regions of a series of cascaded waveguides
forming a circuit such as that shown in Fig. 2. This matrix
representation typically assumes that the waves leaving the
simulation are terminated in a perfectly matched load.

This load condition can be manipulated with the GSM
algorithm to represent this as an eigenvalue problem. If the
first and last region ports are replaced by PEC’s creating a
perfectly reflecting boundary condition for each mode in these
two regions, then the vector scattering amplitudes are defined
at the ports of the circuit as

by =—31 )
bo=—ds. 3)

These scattering vector identities are substituted into (1) yield-

ing
i Si [al ] _ { b ]
Sa1 Sao | 102 b
_|—a
K
This equation is of the form suitable for determining the
eigenvalues for a geometry terminated with a PEC boundary
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condition. In this procedure, the frequency is swept in the real
or complex plane to determine the eigenvalues for the problem
geometry. This is accomplished by taking the determinant of
(5), where as the frequency is swept, eigenvalues are found as
the determinant goes to zero

Si2
Sao+1

Sin+1

—— = 0.
So1

®

The GSM eigenvalue equation shown in (5) is used to
determine the normal mode cutoff frequencies (eigenvalues)
for any structure modeled with the mode matching algorithm,
assuming that the structure is terminated with PEC boundaries.
Using this algorithm in conjunction with the GSM determined
for a single period of a periodic structure will permit the
identification of the cutoff frequencies for the various modes
capable of propagating on the structure. In particular, the band-

pass dispersion characteristic commonly encountered with a -

surface wave mode will permit the determination of the cutoff
frequency for the 0-mode and for the w-mode. Determination
of these two frequencies defines the passband for the surface
wave mode of the circuit being analyzed.

C. GSM Eigenvalue Problems Using the
Re-entrant Boundary Condition

The Re-entrant boundary condition is analyzed in a similar
manner to that of the PEC boundary condition. However, the
Re-entrant boundary condition requires that any wave leaving
Port 1 of a two port circuit re-enter the simulation at Port
2 with no respective amplitude or phase change. The same
phenomenon is true for the inverse problem of a wave exiting
Port 2 and re-entering Port 1. This problem requires symmetry
of the boundary conditions for the first and last regions,
where the two regions must be defined as physically identical
waveguide regions with the same normal mode content.

This boundary condition requires that the vector scattering
amplitudes be represented as

2 (6
1 (N

These two vector scattering amplitude identities are applied to

the GSM yielding
&) [:]-[]
Syz | Lo2] b2

F
Sa1

The symmetry conditions defined for the Re-entrant boundary
condition force the transmission and return loss sub-matrices
of the GSM to be square, and manipulation of the transmission
terms is now possible. This problem is of a form suitable
for determining the eigenvalues for a re-entrant geometry. As
before, the frequency is swept in the real or complex plane to
determine the eigenvalues
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The Re-entrant boundary condition used with the GSM
for determining eigenvalues is generally not applicable for
analyzing a single period of a periodic circuit. The two surface
wave resonances being sought for the purposes of this analysis
are the 0-mode and the w-mode. The Re-entrant boundary
condition requires that the signal magnitude and phase be
equivalent at each port of a two port circuit. Therefore, the
eigenvalue for the O0-mode is determined with this algorithm
because the signal magnitude and phase are equivalent at each
port. However, the w-mode is not found with the Re-entrant
boundary condition, because the resulting electromagnetic field
magnitude is equivalent at each port, but exhibits a 180°
phase shift between periods. Therefore, the PEC boundary
condition for the GSM provides a more generalized and, hence,
preferable eigenvalue formalism for analyzing a single period
of a periodic circuit.

III. DISPERSION ANALYSIS OF A
PERIODIC CIRCUIT USING THE GSM

A. Classical Dispersion Analysis Using
the Transmission Matrix

The determinantal equation for a periodic circuit is typically
derived from the transition (transfer) matrix for a single period
of a periodic circuit. The transition or transfer matrix is
equivalent in form to the transmission matrix for a circuit,
as addressed by Collin [6] for voltage-current and wave
amplitude matrix relations. The wave amplitude transmission
matrix relationship has been adapted to the definition of
scattering matrix variables for the circuit illustrated in Fig.
2. The GSM for the circuit shown in Fig. 2 is represented as
previously shown in (1).

The transmission matrix representation relates the Port 1
scattering (wave amplitude) variables to the Port 2 scattering
(wave amplitude) variables as

-6

b1 |a2]’

The general form of the transmission matrix in (10) relates
the input port (Port 1) forward and reflected mode amplitude
variables to the output port (Port 2) forward and reflected wave
amplitudes. The matrix form shown in (10) will be referred to
as the generalized transmission matrix (GTM), since it is in a
form similar to that of the GSM represented in (1).

The GTM has been extensively evaluated in comparison
to the GSM for the mode matching algorithm. This problem
has been addressed by Mansour [15] for the general analysis of
circuits involving the mode matching algorithm. The transmis-
sion matrix has many advantages over the scattering matrix, in
particular for the analysis of a series of cascaded waveguide
discontinuities. If a scattering matrix is determined for each
junction and region of a circuit using the mode matching
algorithm, then the matrices are combined through defined
matrix manipulations [12]-[14] to form the GSM. However,
if a transmission matrix is determined for each region and
junction, then the matrices are combined by simply multiplying
the matrices [6], [15] in order of their occurrence for the
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circuit. This reduces the computational effort significantly and
has demonstrated equivalent analytical results with the GSM
[15] approach.

The cascaded waveguide scheme for the GTM is much
simpler to implement than the GSM technique, but several
problems exist with the GTM technique. Mansour [15] for-
mulated the analytical technique with the capability to use an
arbitrary number of modes in each region forming the GTM
with the mode matching algorithm. Omar [16] first developed
the GTM technique using an equal number of modes in each
region of the circuit, but experienced problems satisfying the
RC criterion. These two efforts have been recently reviewed
by Dai [17], who confirmed that the effort by Omar [16]
violates the RC criterion when an equal number of modes are
used in each region for specific classes of problems. However,
the ability to formulate the GTM with an unequal number of
modes in each region of the circuit will not violate the RC
criterion.

The formulation of the GTM by Mansour [15] and the
classical formulation by Omar [16] suffer from a potential
numerical instability due to the form of the GTM. The GTM is
partially formed using transmission terms defining waveguide
junctions, and uniform lengths of waveguide similarly defined
for the GSM. The mode matching algorithm uses propagating
as well as evanescent modes to define the electromagnetic
fields at the plane of a discontinuity. The GTM contains
exponential functions with positive arguments, which may
result in numerical overflow for the evanescent modes in the
matrix. This problem may lead to numerical instabilities with
the GTM when evanescent modes are included in the mode
matching process. This eventually led Mansour to abandon
the GTM process.

Nevertheless, the GTM is commonly used to form a deter-
minantal equation for a periodic circuit from which the system
normal mode dispersion characteristics are determined. This
1s accomplished by selecting one port of the circuit as the
defined reference plane for the dispersion analysis problem.
The waves exiting this circuit and entering the next period
are related by Floquet’s theorem [1], [6], which relates the
waves at the defined reference plane for the two periods by a
complex phase constant. In particular, any wave leaving the
first period of the circuit is related to the input wave amplitude
for the second period of the circuit by a defined phase constant
for the circuit length (L), and the two ports are related with
respect to the reference plane as

bg :-dle

by = EzeF”L

-I,.L

an
(12)

where I',, = a, + jB,. Substitution of (11) and (12) into
(10) with respect to the reference plane and simple matrix

manipulation yields
Ty [E 1 } _|o :I
_Tng —e-TuL| | b1 0

Ty —e Tl
T
where e~T'=Lis a diagonal matrix defining the complex eigen-
values to be found expressing the dispersion of a periodic
circuit.

13)
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This formulation of the eigenvalue problem is subject to nu-
merical instabilities as previously described, but (13) demon-
strates the form necessary in the mode matching formalism to
solve for the dispersion characteristics of a periodic circuit.
The GTM technique has been proven to be numerically
unstable [7], [17], while the previous derivation of the GSM
[12]-{14] illustrates that the GSM technique is unconditionally
stable. This GSM matrix stability is independent of the RC
criterion, but the accuracy of the resulting normal mode
scattering parameters and corresponding eigenvalue solutions
for a dispersion relation depends upon the ability of the
selected mode set to satisfy the RC condition. Therefore,
a technique to produce an eigenvalue equation of the form
presented in (13) must be determined for the GSM to eliminate
the numerical instabilities encountered with the GTM.

B. Dispersion Analysis Using the GSM

The procedure for determining the dispersion characteristics
of a periodic circuit from a GSM is a new algorithm of
significant importance, and it has been solved independently
by Best [7] and Dai [18]. The eigenvalue problem defined by
(13) for the GTM is similarly defined for the GSM. This is
accomplished by defining a reference plane for the periodic
circuit. Fundamentally, the circuit periodicity requires that the
regions defining the input and output ports for the circuit must
be identical with regard to waveguide type, waveguide cross-
sectional dimensions, number of modes, and mode types and
mode indices used for both regions. These restrictions were
similarly imposed for the GTM dispersion analysis, and will
make it possible to apply Floquet’s theorem to the two port

structure yielding
S as 0]

This equation defines e~T~L and eT'~L as diagonal matrices
defining the eigenvalues for the system normal modes.

Fundamentally, (14) is a unique form for solution of the
system eigenvalues, and simple manipulation of the equation
will put it into the form of a Generalized Eigenvalue [19]
defined as

S

Sa1 — elnl

14

(A-)B)Z = 0. (15)
The manipulation of (14) into the form of a generalized
eigenvalue equation is illustrated in Appendix A, which yields

T— S5 S11 —S53 Stz [al} B
S11 Si2 asy
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This form of the determinantal equation found by Best [7] was
similarly determined by Omar [20] in support of Dai [18].
The determinantal equation for the GSM is shown in (16),
as compared to (13) for the GTM. The fundamental difference
between the two solution techniques is the implied numerical
stability of the GSM due to the form of the matrix, while the

(16)
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presence of evanescent modes may force the GTM to become
numerically unstable. Certain classes of problems involving
only propagating modes yield identical solutions [15]-[17]
from the two techniques. In general, the form of the mode
matching solution requires the use of evanescent modes to
satisfy the RC criterion. Thus, the GSM system normal mode
solution technique is preferable to the GTM technique due to
the possibility of encountering numerical instabilities with the
latter.

IV. DISPERSION ANALYSIS OF THE LINEAR
VANE-TYPE WAVEGUIDE USING THE GSM

The dispersion properties of the linear vane-type waveguide
have been previously explored using field matching algorithms
[2], [4]. [7], [8]. The linear vane-type waveguide geometry
in this study is the closed end space geometry depicted in
Fig. 1. The field matching algorithm developed by Gunderson
[4] found resonances for the surface waves [6], [7] forming
the first passband of the slow wave circuit. The ability to
resolve the system normal modes and accurately solve for the
dispersion of a periodic circuit using the GSM algorithm is
determined by the number of modes kept in the truncation of
the infinite series expansion of the waveguide junction normal
modes.

The truncation of the infinite series expansion of the wave-
guide junction normal modes involves the ability of the modes
used in the GSM simulation to satisfy the RC criterion. It
has been demonstrated that if an insufficient normal mode
expansion is used for a waveguide junction, then the calculated
GSM will be in error due to the violation of the problem
boundary and edge conditions [7], [11], [21]. Therefore, the
ability of the GSM algorithm to adequately predict the disper-
sion characteristics of a periodic circuit is determined by the
proper selection of region normal modes in the correct ratios
between regions to satisfy the RC criterion.

The RC criterion problem is demonstrated with the mode
matching simulation of a single period of the closed end
space linear vane-type waveguide shown in Fig. 3. This
geometry was also analyzed using the field matching algorithm
developed by Gunderson [4] for the first passband. This circuit
geometry has been extensively analyzed [7] using various
experimental and analytical techniques. The intent of the
present study is to provide a method to compare the field
matching and GSM dispersion algorithms with experimentally
determined dispersion information for the analysis of the
structure shown in Fig. 3.

This problem was analyzed with the mode matching al-
gorithm using three different mode sets to determine the
dispersion properties as a function of the RC criterion. The
modes used for these simulations consists of the rectangular
waveguide TE# and TM? normal modes. The mode set
selected for this mode matching simulation was based on the
concept of the continuity of the transverse electromagnetic
fields defined by an infinite series expansion of the waveguide
region normal modes at the plane of a waveguide discontinuity.
The infinite series expansion of the region normal modes
requires truncation for implementation on a computer, in
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Fig. 3. Single period of linear vane-type waveguide with closed end spaces.

TABLE I
COMPARISON OF CALCULATED AND MEASURED DISPERSION PARAMETERS
FOR THE LINEAR VANE-TYPE WAVEGUIDE SHOWN IN Fig 3

mode
dentifier

Expenimental  Gunderson [4] GSM GSM GSM
frequency, GHz frequency. GHz 24 modes, GHz 52 modes. GHz 97 modes. GHz

TE 6 6600 not calculated 6 6600 6 6600 6.6600
TEy; / TMy, 94800 not calculated 94800 94800 94800
EHy, 8 6550 not calculated 8 5650 86100 86100
EHy, 11 6850 not calculated 11.9750 11.8050 11 8050
0-mode 6.6600 6 6682 6 6600 6 6600 6 6600
n/9-mode 6.9900 69753 6.9450 6.9750 6.9750
27/9-mode 77700 77787 77250 77700 77700
7/3-mode 86550 8 6862 85500 8 6700 8.6700
4n/9-mode 94050 93234 9 3000 94200 94200
Sn/9-mode 98100 97070 9 6900 9 8250 9 8250
2n/3-mode 10.0350 9.9435 9.9150 10 0500 100500
Tn/9-mode 101850 100877 10 0650 102000 102000
81/9-mode 102750 10 1662 10 1550 10.2900 102900
w-mode 10.2900 10.1911 10 1700 10.3050 10 3050

which the point of truncation is selected to satisfy the RC
criterion. This concept is typically satisfied with the mode ratio
algorithm [7], [11] to establish mode limits for the simulation.
The mode ratio algorithm developed by Shih and Gray [22]
was used to determine the mode index limits for this GSM
simulation.

Three mode matching simulations were performed for this
circuit, with the results shown for comparison in Table I. The
GSM dispersion analysis made use of 24, 52, and 97 modes
for Regions 1 and 3 shown in Fig. 3. The GSM dispersion
algorithm was used to determine the cutoff frequency of the
hybrid modes for the circuit, as well as slow wave mode
dispersion information for the circuit shown in Fig. 3 assuming
it were nine periods in length. This information is shown
in Table I in comparison to experimental data as well as
eigenvalue information using the field matching algorithm
developed by Gunderson [4]. The error encountered using the
field matching dispersion algorithm and the GSM dispersion
algorithm with relation to the measured dispersion information
is summarized in Table IL

The GSM simulations and circuit measurements were per-
formed over a 6.0 GHz bandwidth extending from 6.0 GHz to
12.0 GHz using 401 frequencies. This provides a 15 MHz
frequency of resolution for identifying mode frequencies.
The experimental data presented in Table I serves as the
point of reference for this comparison of dispersion analysis
techniques.

The first GSM simulation involved 24 modes in Regions
1 and 3, and used 17 modes in Region 2. The Region 1
and 3 mode indices for the T E* models included the m; =
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TABLE II
COMPARISON OF THE DISPERSION ERROR OBTAINED BETWEEN
MEASURED AND CALCULATED DATA SHOWN IN TABLE I FOR
THE LINEAR VANE-TYPE WAVEGUIDE SHOWN IN FiG. 3

mode Gunderson [4] GSM GSM
dentifier error, % ' 24 modes. error, % 52 or 97 modes, error, %
TE; o N/A 0.0 00
TE /Ty, N/A 00 0.0
EHy, N/A 10 0s
EH) o N/A 73 10
0-mode 0.1 0.0 00
7/9-mode 02 06 02
2n/9-mode 01 0.5 00
n/3-mode 03 12 02
47t/9-mode 08 11 0z
5m/9-mode 1.0 1.2 0.1
2n/3-mode 09 12 01
Tn/9-mode 09 12 01
8m/9-mode 10 1.2 01
T-mode 09 12 01

ms = 0,1,2, 3and n; = n3 =0, 1, 2, 3 modes. Similarly,
the TM? mode indices for Regions 1 and 3 included the
m1 =mg =1, 2, 3and n; = n3 =1, 2, 3 modes. Region 2 for
the T E* modes was limited to mode indices ms =0, 1, 2, 3
and ny = 0, 1, 2, and for the T'M? modes to index limits
me = 1, 2,3 and no = 1, 2. Examination of the periodic
waveguide system normal mode cutoff and slow wave mode
dispersion information shown in Tables I and II indicates that
the error using the GSM dispersion algorithm is greater than
that obtained using the field matching dispersion algorithm.

The error in determining the dispersion information with the
GSM algorithm can be reduced by increasing the number of
modes used in the simulation to improve the RC criterion. The
second GSM simulation involves 52 modes in Regions 1 and
3, and 38 modes in Region 2. The Region 1 and 3 mode indices
for the T'E* modes included the mq = m3 = 0, 1, 2, 3 and
ny =ng = 0,1, 2,3, 4,5, 6,7 modes. Similarly, the 7'M~
mode indices for Regions 1 and 3 included the my = m3 =
1,2,3and n; =ng =1, 2, 3,4,5, 6,7 modes. Region 2 for
the TE* modes was limited to mode indices ms = 0, 1, 2, 3
and no = 0,1, 2, 3,4, 5 and for the TM* modes to index
limits my =1, 2, 3and ng = 1, 2, 3, 4, 5. Examination of the
dispersion information in Tables I and II indicates that the slow
wave mode dispersion error has been reduced substantially by
improving the RC criterion in this simulation.

Finally, the GSM dispersion error may potentially be further
reduced by increasing the number of modes used for the
simulation. The third GSM simulation involves 97 modes in
Regions | and 3, and 71 modes in Region 2. The Region 1
and 3 mode indices for the T'E# modes included the m; =
m3=0,1,2,3,4,5,6andn; =n3=20,1,2,3,4,5,6,7
modes. Similarly, the TM?® mode indices for Regions 1
and 3 included the m; = m3 = 1,2,3,4,56 and nq, =
ng =1, 2,3, 4,5, 6,7 modes. Region 2 for the TE* modes
was limited to mode indices mo = 0, 1, 2, 3,4, 5,6 and
ny =0, 1, 2, 3, 4, 5. and for the TM?* modes to index limits
ms = 1,2,3,4,5,6 and ny = 1, 2, 3, 4, 5. Examination
of the dispersion data presented in Tables I and II reveals
that the dispersion solution converged for the frequency span
being modeled using 52 modes.

Therefore, the system normal mode eigenvalue and disper-
sion solution determined using the mode matching algorithm
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Fig. 4. Eigenvalues determined using the PEC boundary condition with the
GSM for the linear vane-type waveguide shown in Fig. 3.
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Fig. 5. GSM dispersion diagram determined for the first passband of the
linear vane-type waveguide shown in Fig. 3 using either 52 or 97 modes for
Region 1 of the circuit.

forming a GSM has illustrated convergence using 52 modes,
and the solution accuracy does not improve using 97 modes.
This clearly illustrates the importance of the RC criterion
for accurately solving for the surface wave mode eigenvalues
and corresponding dispersion information from the GSM. The
resulting determinant of the GSM using the PEC boundary
condition with either 52 or 97 modes is shown in Fig, 4, and
the corresponding system normal mode dispersion information
is shown in Fig. 5. Fig. 4 clearly identifies the resonance for
the 0-mode at 6.6600 GHz, and for the m-mode at 10.305 GHz.
These resonances correspond to the beginning and ending
frequencies associated with the first slow wave mode passband
of the periodic linear vane-type waveguide circuit shown in
Fig. 3. The dispersion of the hybrid waveguide modes shown
in Fig. 5, in contrast to the dispersion of the system normal
mode (slow wave circuit mode), illustrates the generality
of this new analytic technique for periodic circuits. These
hybrid waveguide modes have been previously addressed
with regard to achieving low attenuation [5] in high power
guided wave structures. The GSM dispersion and eigenvalue
algorithms yield analytic expressions for the periodic circuits
being analyzed, and the accuracy of the solutions are a function
of the frequency resolution of the simulation, and the RC
criterion.

Fundamentally, the variational field matching solution ap-
proach developed by Gunderson [4] and recently determined
by McVey [8] provides the fastest solution technique for
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solving for the surface wave dispersion properties of the linear
vane-type waveguide. The solution of the m-mode typically
suffers a 1% error between theory and experiment. This
design error is acceptable for many applications. The cost
associated with iteratively modifying the hardware to reduce
this design error is typically prohibitive when higher accuracy
dispersion characteristics are required. This dispersion design
problem is easily resolved by completing the design process
with the GSM dispersion algorithm, which will serve to
identify competing modes for the surface wave mode passband
demonstrated in Fig. 5.

Inspection of the dispersion diagram in Fig. 5 reveals that
three waveguide modes exist in the passband for the surface
wave mode. These modes (T'Ey o, £Hy 1 and TEy 1/TM; 1)
are capable of interfering with the excitation and propagation
of the surface wave on the circuit. These waveguide modes
can be excited by circuit perturbations and coupling port
geometries [7] which will lead to interference and power loss
from the surface wave. The power loss from the surface wave
is associated with coupling to the waveguide modes. The new
dispersion analysis tool can be used to optimize the design of a
periodic circuit, such as the vane-type waveguide, to eliminate
the possibility of waveguide modes existing in the passband
of the surface wave.

V. SUMMARY

A generalized analytic technique has been developed using
the mode matching algorithm to model a single period of a
periodic circuit. This analysis results in the formation of a
GSM for the circuit being analyzed. The resulting GSM is
easily manipulated to produce an eigenvalue solution and a
new dispersion solution for the system normal modes for the
periodic circuit under study. The accuracy of these analytic
techniques is determined by the RC criterion and the frequency
resolution of the simulation. However, this analytic technique
can easily be applied to any periodic circuit configuration
capable of being analyzed with the mode matching algorithm,
providing an analytic expression for the dispersion and eigen-
values for an arbitrary circuit configuration. The application
of this concept to a linear vane-type waveguide yielded a
surface wave dispersion error range of 0.0% to 0.21%. This
analytic technique is easily implemented using conventional
computing capability to provide a highly accurate eigenvalue
and dispersion solution technique for designing new periodic
circuits.

APPENDIX A
DERIVATION OF THE DETERMINANTAL
EQUATION FOR THE GSM

Equation (15) for the generalized eigenvalue equation [19]
illustrates that the eigenvalues ()) are determined for a system

of equations split into two arguments, matrices A and B.
Restating (14) as two equations yields

= 5 G1+519 G2=0 d1+e Tl Gy (Al
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and

G140 G2 =521 e TnL Gy + 85y e-InL Gy (A2)

Equations (A1) and (A2) can be stated in matrix form as

[6 1 :l _ 6 e~ TnLl a 1

a2 Syre—Tnl  Spe-ToL | (G2
(A3)

The resulting equation is generally of the form defined in

(15). The problem is further simplified for solution if (Al)
is rewritten as

S22 S11G1+ 822 S12G2 = 0d1+ 933 e Tnldy. (Ad)

Subtraction of (A4) from (A2) yields

(T-52 5u)a1 - 52 Suaz=5n e "lay (A5

Equations (A1) and (AS5) can be stated in the form of the
Generalized Eigenvalue problem as

a1 |

as |

T-S2 Su —82 S
i S12
g;l_ e=nl 0 ?1:1
a9 ’

(A6)

0 e~ Tnl
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